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Abstract-Gas flow from one chamber to another through a plane wall perforated with cylindrical channels 
is investigated. Gas flow close to the surface of a wall is studied by the methods of kinetic gas theory. The 
molecule velocity distribution function is found from the Boltzmann equation as a result of its solution by 
the method of moments. Intermolecular collisions in the channels are supposed to be absent. Molecules 
collide in the Knudsen layer near the perforated wall. This leads to the formation of a uniform flow far 

from the wall. 

1. INTRODUCTION 

GAS FLOW through a thin wall with practically zero 
permeability was considered in refs. [l, 21. A good 
agreement between theory and experiment was found. 
The data obtained by the method of moments [l] and 
numerically [2] are also in agreement. The method of 
moments proved to be valid in analogous problems 
of the shock wave structure [3] and gas evaporation 
from a flat surface [4]. All this allows this method to 
be used in a more general case when gas flows through 
a wall with cylindrical holes. The results of the sol- 
ution can be used in the problems of gas flow within 
perforated boundaries. 

The ratio of the area occupied by holes to the total 
area of the wall cross-section will be referred to as 
porosity q. The gas to the left of the wall (Fig. 1) is 
considered to be in equilibrium and is described by 
the distribution function f0 

where n, and T,, are the number density and gas tem- 
perature in the chamber to the left of the wall, respect- 
ively ; <(c,v, <,,, g,) is the velocity of molecules. Gas 
particles do not collide with each other inside the 
channels and are reflected by the wall with complete 
energy and momentum accommodation. Gas flows 
through the channels in the wall at low speeds into 
the second, low-pressure chamber wherep, = n,kT, 

(n, and T, are the number density and gas tem- 
perature in the chamber to the right of the wall). At 
a distance of several mean free paths from the wall 
the Maxwellian velocity distribution of molecules is 
established [3] 

(L-~,)*+~:-+~Iz 
- 2RT, (2) 

FE. I. Schematic of a gas flow through a perforated wall. 

where u, is the mean velocity of gas particles. The 
behaviour of the macroscopic gas parameters will be 
considered. 

2. BOUNDARY CDNDITIONS 

To solve this problem, it is necessary to determine 
the ~st~bution function f+ of molecules escaping 
from the channels. Each channel has a length I and a 
diameter d. Suppose that to the left and to the right of 
the channel the gas is also described by the Maxwellian 
distribution functions with parameters n,, T, and 
n,, T, respectively. In a free molecular flow regime 
the density distribution of molecular collisions with 
the walls of the channel v,,(x) can be presented as a 
sum of the solution of two problems of gas expansion 
into vacuum [5] 

v0(X)=(l-v,)[;-A(L+2~)]+v, (3) 

where v, = n, /no. The coefficient A depends on the 
relative length of the channel L = I/d 
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NOMENCLATURE 

diameter of the channels in a wall T temperature 
distribution function T0 gas temperature in the chamber to the 

fm Maxwellian distribution function left of the wall 
F angular distribution of gas flow T, gas temperature far from the wall 

F0 angular distribution of gas flows escaping u mean gas velocity at the point with the X- 
into vacuum coordinate 

k Boltzmann constant ncc mean gas velocity far from the wall 
I length of channels in the wall W probability of the passage of molecules 
L relative length of channels, I/d through the kinetic layer 
n number density of molecules W0 probability of the passage of molecules 

a0 number density of molecules in the through the channel 
chamber to the left of the wall X coordinate. 

n, number density of molecules far from the 
wall Greek symbols 

PO gas pressure in the chamber to the left of 0 angle 
the wall 1 kinetic layer thickness 

Pm pressure far from the wall A0 mean free path of molecules in the source 

4 wall porosity chamber 
qw/qL ratio of the heat flux passing through a “0 density distribution of collisions of 

layer to the heat flux entering the molecules with the walls of the channel 
kinetic layer from the wall r velocity of a molecule in a laboratory 

R gas constant coordinate system 

S velocity ratio [,, t4., 5, components of velocity <. 

A = L3-22(2-LZ)J(lfL2) 

3(LJ(l +L’)-ArshL) ’ 
(4) 

FI (0) 
f+ = afo (7) 

Knowing the distribution function of molecules _.. _ . which is valid at large distances from an isothermal . 
reflected from the channel walls vo(x) f o, it is possible 
to calculate the angular distribution of the flows of 
molecules escaping from the channel F,(O). This 
quantity is equal to the ratio of the gas flow emanating 
from the channel at an angle 0 to the x-axis in a single 
solid angle to the flow in the axial direction [6] 

ss s 

1,’ z 
dS f(O)co~O[~ d< 

0 

F,UU = ’ 

ss s 

n,2 

dS f (0 = 015 3 d5 
0 s 

(5) 

where integration is made over the cross-section of 
the channel exit S, dS is an element of the area of 
this cross-section, f(Q) is the distribution function of 
molecules escaping at an angle 8 to the channel axis. 
The calculation of the integrals yields 

Fl(0) = (I-v,)F,(O)+v, cos8. (6) 

Here Fo(0) is the angular distribution of gas flows 
expanding into vacuum [7]. 

Based on the mass conservation law for the mol- 
ecules escaping from the channel, the distribution 
function of molecules f +, averaged over the channel 
exit cross-section is set in the form 

mrcrocapiltary. In a partrcular case, wnen gas expanas 
into vacuum (v, = 0), the following expression is 
obtained [8] : 

f, =z.r,. 

To obtain the explicit solution, the unknown dis- 
tribution function at a wall must be taken in the form 
f _ as is the case in any moment method. 

Now, the form of the distribution function on the 
surface of the wall (x = 0) and in the far developed 
flow (X = m) will be assigned [l] 

x=0: 
{ 

f =f,'=4f++f+, 5,>0; 
f = f- =af*+Bfm, 5,GO; 

x=m:f=f= 1 5, > 0 
5, < 0’ (9) 

Here f + is the distribution function of molecules 
reflected from the impenetrable areas of the wall. In 
the case of diffuse reflection of molecules from the 
wall 

.f’+ = (1 -dvfo (10) 

where v is determined by the density of collisions of 
gas particles with the wall. The term af, allows for 
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the molecules which returned to the wall on having 
collided with each other [I] 

(L-u*)‘+5,2+52 
- 2RT, (11) 

where n, = qn,$, u* = 2u,, uo = J[RTo/(2n)], 
T* = To[l -2/(3rc)]. The coefficient tl can be chosen 
arbitrarily, for example 

a = iB (12) 

wherei< 1. 
The functions of the distribution of molecules over 

the wall and in the developed flow (9) are the bound- 
ary conditions for the Boltzmann equation 

C$ = 
s 

(f’f’, -ff,)gbdbdadT, = J(f,f,). 

(13) 

3. PARAMETERS OF A KINETIC 

BOUNDARY LAYER 

To determine the coefficients v and 8, the mean 
velocity U, and the gas temperature T, in the 
developed flow, the conservation equations will be 
used. The balance equation of the number of particles 
on the impermeable areas of the wall can be written 
as 

s 
f+Ld<+(l-9) 

s 
f-<,d< = 0. (14) 

:,>o C,<O 

Averaging the Boltzmann equation (13) with the 
weight Q,(c) in the velocity space yields the equations 
for the macroscopic gas characteristics 

$ 
5 

t.Q,(C)fdC = 
s 

Qj(T)J(f> fl Id4 = AQj(t). 

(15) 

At Qj= 1>5,,5 3 */* the right-hand side of equation 
(15) vanishes. The conservation equations of mass, 
momentum and energy are obtained which can be 
written as 

(j= 1,2,3). (16) 

After calculating the integrals in equations (14) and 
(16) it is possible to obtain a set of equations for the 
main parameters of the kinetic boundary layer 

T2 = 2, s = J(2;T, ), v, /?. 

(17) 

Generally, in this system of four equations (14) and 
(16) it is assumed that the quantity p is known and 
that quantities T,, S, v, and fi are unknown. However, 

bJ..o 

FIG. 2. Velocity ratio as a function of pressure ratio. 
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FIG. 3. Probability of the passage of molecules through the 
kinetic layer. 

it is much simpler to make calculations at a given 
velocity ratio S and then determine p, T,, v, and /3. It 
is seen from the solution of the resulting system of 
equations (Fig. 2) that there is a one-to-one cor- 
respondence between the quantities S and p. Conse- 
quently, the quantity S can be taken as the deter- 
mining parameter. 

Knowing the solution of equations (14) and (16), 
one can calculate heat and mass fluxes through the 
kinetic boundary layer. The mass flux is determined 
by the probability that molecules would pass through 
the kinetic layer W (Fig. 3). This parameter is equal 
to the ratio of the gas flow passing through the layer 
to the gas flow entering the kinetic layer through the 
channels and that formed as a result of the reflection 
from the impermeable areas of the wall 

w= 
2Jns 

~,/T2K--v)Wo+vl’ 

W, = 2 
s 

F,(B)sinBdB. (18) 

The quantity W. is the probability of the passage of 
molecules through a channel. 

The heat flux through the Knudsen layer can be 
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FIG. 4. Heat flux ratio. 

characterized with the aid of a similar ratio qw/qL 
(Fig. 4) 

qw ,/7&/W12+S2) -_= 
P[(l -VI wo + v/q1 . qL 

(19) 

4. KINETIC LAYER STRUCTURE 

Represent the molecular distribution function at 
any point of the kinetic boundary layer as a linear 
combination of the Maxwellian distribution functions 

f= ,$, a@)“& 

f, = fo+ (5X > O), f2 = fa (CX > O), 
(20) 

j-3 = fcc(5X < O), f4 = f*(L < 0) 

where a,(x) are the unknown coefficients. According 
to the present authors’ assumptions about the form 
of the distribution function of molecules at the bound- 
aries, the corresponding conditions for the coefficients 

a,(x) are 

1 

a, = 1, a, =o; 
x=0: 

a3 =/3, a‘$ = LX; 

{ 

a, =o, u*= 1 
x=co: 

u3 = 1, u4 = 0’ (21) 

To determine the values of u,(x), three conservation 
equations will be used, the fourth equation is obtained 

forQl=r: 

ii, cl,@(x)= nruu, ; 

,j+~~(x) = n,RT,(2S2+1); 

.i, C,/&(X) = n,u,RT,(S2+5/2); 

where coefficients ckr are the moments of functions Ji 

C k, = 
s 

5,QJid< (k = 1,2,3,4). (23) 

These coefficients depend on the parameters of the 
kinetic boundary layer. The integral of collisions on 
the right-hand side of the latter equation (21) for 
Maxwellian molecules is [3] 

where I,, is the mean free path of molecules in the 
source chamber, n and u are the number density and 
mean gas velocity at the point with the x coordinate, 
respectively. 

The first three equations of (22) will be used to 
express the coefficients a,, u2, u., by a, 

h-1 B-u3 
@=I= u2=B-11 u4 = &?“;r:. (25) 

Substituting these expressions into the fourth equa- 
tion of system (21) the differential equation for deter- 
mining function u3(x) is obtained 

y=$+U3-l)(u,-l+r). (26) 
0 

Here, the following designations are used 

n@,@* 2 4s= 
A=- r=_-- 

12Bp=T,’ @, Q2’ 

The quantities B, @, and m2 depend on the parameters 
of the kinetic boundary layer 

B= - (l-v)&+; 1 J7-2 +p[E+(S) 

+@-- l)E-(S)] +; $ 
0 

3’2Em(S*), 
0 

-l-erfS 

+czqn,erfcS 
2% 

* 
1 

+erfc S, 

aZ=L p 
B-l {II 

(l-~)W~+i 1 -1-erfS 

+ccp&erfcS, +erfcS. (27) 
0 I 

Functions E + and E- depend on the velocity ratios 

S, S, = u*l J(2RT,) 

E* = (l+S’)exp(-S2) 

fJnS(l+erfS)(S*+3/2). (28) 

Coefficients W2, W, and W4 are determined by the 
length of the channels 

s 

n/2 
w, = 4 F,(B) cos2 0 sin 0 de, 

0 
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FIG. 5. Number density, mean gas velocity and temperature 
of gas in the kinetic layer. 

s “‘2F,(Q) 
0 

case sm3 0 de. 

The non-linear differential equation (26) for Ar > 0 

has the solution [9] 
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FIG. 6. Angular distribution. 

decrease and the mean velocity increases with an 

increase of the x-coordinate. 
In the problem of the formation of molecular beams 

by packets of channels, the direction of gas flows is of 
great importance. The angular distribution of flows 
can be calculated from relation (5). After calculating 
the integrals of the distribution function ,f’ = 

a,~,++a,f~ (5, > 0), the required relation is 
obtained 

(,_v)w ” 

~(~,e) = 
c0se +; 1 

l-a, 
__ exp ( - S* sin’ tl)_!Z+ (S cos e) 

“+pJy-2 
~0~8. (33) 

x 

a3 = l+(B-1) 
kexp 1 C--J 

( > 

(30) 
-- 

l+fi:l exp -” 
I 

The inequality Ar > 0 is fulfilled under the conditions 
of the subsonic gas flow regime S < 5/6. Equation 
(30) involves the notion of the kinetic boundary layer 
thickness 

hA&. (31) 

The main macroscopic gas parameters (number den- 
sity n, mean velocity u and temperature T) in the 
kinetic boundary layer can be expressed by the already 
known quantities (27) 

As is shown in Fig. 5, in the kinetic boundary layer The solution is obtained for the problem of rarefied 
the number density and the temperature of the gas gas flow through a penetrable wall of arbitrary 

Near the surface of the perforated wall the angular 
distribution depends on both its porosity and thick- 
ness and also on the intensity of the flow of returning 
molecules 

~(0, e) = 
(I-,,~+; 

cog e. 
I-“+; 

(34) 

In particular, when the wall is thin, then F,(B) = cos 0 
and the wall gives off molecules according to the 
known law cos0. In downstream flow the angular 
distribution depends on the velocity ratio only 

~(00, e) = 
E+ (sCOS e) 

E+ (9 
exp(-S2sin2e)cose. (35) 

The calculated data for angular distribution are given 
in Fig. 6. 

5. DISCUSSION OF RESULTS 
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porosity and thickness. In a more accurate statement 
of the problem it is possible to take into account that 
for the solution of the problem for one channel the 
molecules to the right of it have the distribution func- 
tion fm. The violation of the distribution function in 

the chamber to the left of the wall is also possible 
because of the gas flow origination. The assumptions 
adopted in this work correspond to the case of 
the evaporation of molecules from the bottom of 
channels. 

Relations have been derived that connect the con- 
ditions of gas flow in the source chamber with the 
developed downstream flow. The kinetic boundary 
layer parameters calculated at CL = 0 depend on the 
porosity of the wall (Fig. 2). The probability of the 
passage of molecules through the kinetic boundary 
layer increases with an increase of the velocity ratio 
in a developed flow and decreases with an increase of 
the wall porosity (Fig. 3). The heat flux does not 
depend on the wall porosity (Fig. 4). 

The angular distribution of the flows of molecules 
which characterizes the direction of the flow has been 
calculated. In the developed flow the angular dis- 
tribution depends on the velocity ratio only. With an 
increase of the x-coordinate, the angular distribution 
becomes narrower for thin, and wider for thick, walls 
(Fig. 6). 

In the case of low porosity of a thin wall the data 

corresponding to effusion are obtained [l]. When 

impermeable areas on the wall are absent, the results 
coincide with the solution of the problem of evap- 
oration from a flat surface [4]. 

1 

2. 
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TRAITEMENT PAR LA METHODE DES MOMENTS DE LA COUCHE LIMITE 
CINETIQUE DANS LE PROBLEME DUN ECOULEMENT DE GA2 RAREFIE A TRAVERS 

UNE PAR01 PERFOREE 

R&m&On ttudie l’tcoulement d’un gaz d’une chambre a une autre a travers une paroi plane perforee 
avec des canaux cylindriques. L’bcoulement proche de la paroi est etudie par les methodes de la theorie 
cinttique des gaz. La fonction de distribution de vitesse de la molecule est trouvee a paitir de l’equation 
de Boltzmann par la methode des moments. On suppose qu’il n’y a pas de collision entre molecules dans 
les canaux. Les molecules se rencontrent dans la couche de Knudsen pres de la paroi perforce. Ceci conduit 

a la formation d’un ecoulement uniforme loin de la paroi. 

ANWENDUNG DER KINETISCHEN GASTHEORIE AUF DIE STROMUNG EINES 
VERDUNNTEN GASES DURCH EINE PERFORIERTE WAND 

Zusammenfassung-Die Gasstriimung von einer Kammer in eine andere durch eine mit zylindrischen 
Kanllen durchbohrte ebene Wand wird erforscht. Die Gasstriimung nahe einer Wandoberflkhe wird mit 
den Methoden der kinetischen Gastheorie untersucht. Die Verteilungsfunktion der Mole- 
kiilgeschwindigkeit wird aus der Boltzmann-Gleichung bestimmt, wobei zur Liisung dieser Gleichung die 
Momentenmethode verwendet wird. Es wird angenommen, daB keine zwischenmolekularen Kollisionen 
in den Kanllen stattfinden. Molektile kollidieren in der Knudsenschicht nahe der perforierten Wand. Dies 

fiihrt zur Bildung einer gleichmlBigen Stromung in weiter Entfernung von der Wand. 

HCCJIE~OBAHHE METOAOM MOMEHTOB KHHETHYECKOFO CJIOII B 3AflAHE 0 
TEHEHHH PA3PEXEHHOF0 f’A3A YEPE3 fIEP@OPHPOBAHHYIO CTEHKY 

AtmoTamu-Mccnenyexr Tevewie ra3a 113 0Aiiofi KaMepbr B Apyrylo qepe3 nnocrym neperoponry, 

LiMelo*ylo J&inlrHApEirecK&ie KaHaJIbI. ~OTOK ra38 ~6mi3a nosepxriocre neperopown nccnenyercn 
MeroAaMn toiners~ecrcoil reopen ra30a. @yxiknmo pacnpenenenan Monetryn no CKOPOCTXM HaxoAm4 w3 

y,,aBH‘?HH,, EOAbuMaHa, peUIa,l er0 MeTOAOM MOMCHTOB. fipAllOJlaI-aeTCK,'iTO BHyTpH KaHaJIOB Me% 

MOAeKynKpHbIe CTOJIKHOBeHBP OTCyTCTByIOT. MoneKynbl CTa.JIKBBaK)TCK B KHyAUXOBCKOM CJIOe OKOJIO 

nep~opupoBaaaoti CTeHKH. %O IIpFiBOAEiT K o6pasoaanrno BAaJIH OT neperOpOAKH OAHOpOAHOI-0 

nOTOKa. 


